第二换元积分法

若(1)$x=\phi(t)$是单调可导函数,且$\phi(x)\neq 0$,(2)$f(\phi(t))\phi'(t)dt = F(t)+C$则有换元公式则有换元公式$$\int f(x)dx = \int f(\phi(t))\phi'(t)dt = F(t)+C=F(\phi^{-1}(x))+C$$

例1

求$\int\frac{1}{1+\sqrt{x}}dx$

令$\sqrt{x}=t$有

$$ \begin{split} \int \frac{1}{1+\sqrt{x}}dx &=\int\frac{1}{1+t}dt^2 \\ &=\int\frac{2t}{1+t}dt \\ &=2\int[1-\frac{1}{1+t}]dt \\ &= 2\int dt - 2\int \frac{1}{1+t}d(1+t) \\ &= 2t - 2\ln (1+t)+C \\ &= 2\sqrt{x} - 2\ln(1+\sqrt{x})+C \end{split} $$

例2

求$\frac{x}{\sqrt{1-x}}dx$

令$\sqrt{1-x}=t$有

$$ \begin{split} \int \frac{x}{\sqrt{1-x}}dx &=\frac{1-t^2}{\sqrt{t}}d(1-t^2) \\ &=-\frac{1-t^2}{\sqrt{t}}2tdt \\ &=2\int(-1+t^2)dt \\ &= -2t+\frac{2}{3}t^3+C \end{split} $$

所以 $$\int \frac{x}{\sqrt{1-x}}dx= -2\sqrt{1-x}+\frac{2}{3}(\sqrt{1-x})^3+C$$